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We present a class of second-order conservative finite difference algorithms for solving
numerically time-dependent problems for hyperbolic conservation laws in several space
variables. These methods are upwind and multidimensional, in that the numerical fluxes are
obtained by solving the characteristic form of the full multidimensional eguations at the zone
edge, and that all fluxes are evaluated and differenced at the same time; in particular, operator
splitting is not used. Correct behavior at discontinuities is obtained by the use of solutions to
the Riemann problem, and by limiting some of the second-order terms. Numerical results are
presented, which show that the methods described here yield the same high resolution as the
corresponding operator split methods. € 1990 Academic Press, 1o

INTRODUCTION

Over the last several years, there has been considerable development of upwind-
type numerical methods for solving nonlinear systems of hyperbolic conservation
laws in several space dimensions. These methods, generally speaking, are all second-
order extensions of Godunov's first-order method [11]. They incorporate into the
numerical solutions the nonlinear wave propagation properties of the solution, in
the form of Riemann problems and characteristic equations, leading to algorithms
which are robust and accurate, even in the presence of nonlinear discontinuities.
However, all of the methods currently in use are derived using the characteristic
form of the equations in one space dimension, with most of these algorithms being
extented to several space dimensions using operator splitting. Nonetheless, these
algorithms, particularly the operator split ones, have been quite successful in resolving
complex patterns of interacting discontinuities and smooth waves; for further
details see [22] and the references cited there.

In this paper, we will consider a class of conservative finite difference algorithms
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far hyperbolic conservation laws in several space variables which do not make use
of operator splitting. for which the multidimensional wave propagation properties
of the solution are used to calculate fluxes. Unsplit schemes are customarily used
a variety of applications, including petroleum reservoir simulation [18],
zospheric physics [24], and Lagrangian hydrodynamics [1]. Thus, one of our
als is to provide algorithms which have the same robustness and resolution as the
isting operator split algorithms, but which have the same unsplit structure as the
ex:sting algorithms used in the applications codes in those areas. In addition, there
22 two specific applications for which these methods were developed which are the
<.miect of our current research. One is as a method to be coupled with a front
:-zcking method [3]. where the tracked front is represented locally by a polygonal
== which divides the cells into two pieces. In each piece, the solution is updated
~v a method that is ngcessarily unsplit, in order to preserve the Rankine-Hugoniot
re.ztions for the tracéd front. The second application is as a starting point for the
=x-ension to more than one space dimension of implicit/explicit methods of the type
discussed in [10]. In these methods, propagation along each of the characteristic
amilies is treated implicitly or explicitly, depending on whether the CFL number
:a- that characteristic is greater than or less than 1. Thus we require an explicit
sizorithm with properties similar to those of the 1-dimensional algorithms in [7],
~o1 which can be hybridized continuously to an implicit algorithm, in order to have
sizzdy states which are independent of 4r.

The design of the algorithm described here is broken into two steps. First, we
specify an algorithm for a linear scalar advection equation, which, in smooth
regions, is second-order accurate, to which a monotonicity condition, related to
those used in [207] for advection algorithms in one dimension, is applied. We then
comstruct the algorithm for systems by introducing a predictor-corrector formalism
ard by replacing various derivatives in the predictor step by finite differences, using
the advection algorithm as guide: upwind differences for advection become
differences of Godunov fluxes for systems, and monotonized central differences for
advection become monotonized central differences with monotonicity constraints
applied to the appropriate choice of transformed variables. Independently of the
present work, van Leer also derived multidimensional upwind methods for hyper-
bolic conservation laws, following a similar line or reasoning; in particular, both
methods lead to the algorithm for advection given in the next section. However, his
exiension to systems is rather different from the predictor-corrector formalism
described here; for details, see [21].

A major problem in the program outlined above is the specification of design
crC:eria which guarantee oscillation-free results, even in the one for a linear scalar
ecuation. The principal criterion in one space dimension is that the scheme be total
veration diminishing [13]; however, a straightforward generalization of this
crzerion to more than one dimension has been shown in [12] to imply that the
<cheme is at most first-order accurate for smooth solutions. The approach taken in
the present work is to specify cetain necessary conditions that the scheme must
szusfy, and which are satisfied by the schemes described here. These are:
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(1) For a 1-dimensional problem aligned with one of the grid directions. the
algorithm should reduce to a second-order Godunov method of a type described
in{7]

{2) The second-order scheme without limiting, and the first-order scheme
obtained by imposing the full limiting of the fluxes at all mesh points, should have
as linear difference schemes, the same CFL stability limit on the time step. This
CFL stability limit should be the same as for an operator split scheme, with the
component 1-dimensional algorithm as in [7].

(3) 1In the case of linear advection, the fully limited scheme should satisfy a
maximum principle.

In the following, we will restrict our attention to the case of two space variables.
Although the formalism developed here carries over 1o higher dimensions, the
trade-offs between performance and cost change as the number of dimensions grow;
a proper evaluation of what those trade-offs are can only be made by numerical
experimentation. In three dimensions, such a study would strain the capabilities of
present computer technology. Some discussion of these considerations will be made
in the final section of this paper.

1. ADVECTION ALGORITHMS

We consider the scalar advection equation in two space variables

dp
E-FH-V(J—O
(L.1)

- -

¢ C

x=(x, ¥), p=p(x, 1) V=(—,7) u=(u, v) u, v>0.
éx Cx

We want to solve numerically initial value problems for (1.1). To this end, we
will attempt to construct algorithms which generalize upstream-centered algorithms
in [20] to two space variables, without replacing the operator approximating the
time evolution of (1.1) by the product of 1-dimensional evolution operators. Our
strategy will be to start from a well-behaved first-order upwind algorithm for
solving (1.1). We add to the evolution operator the terms necessary to make the
algorithm second-order accurate in a way such that they can be limited, ie.
subtracted off, at discontinuities.

Let Ax, Ay be spatial increments, 4¢ a time increment. We assume that we know
p7» the average of p at time 1":

1
p?,,-=—j p(x, 17) dx.

i iy

Here A,-_]:[(i—%)Ax,r(i+%)Ax]x[{jf%)A,\',(j—i—%)Ay], o,;,=(area of 4,))
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We wish to calculate pjf}", the solution to (1.1} at time "~ '=1"+ 4z A natural
zigorithm for doing this is to trace backward in time from " + At the set 4, ;, along
the characteristics of (1.1), to obtain 4 ,. Then p',.'_j‘ is set equal to the average
over 4 of the trivial interpolation function p'ix)=p7, if xed,

1
pil = I pl(x, v)dx dy
p

L4y

1
=(A4.p7,+ 4297, +ABP:'|—1__;+A:1P:'1_ 1,_;71}6_' {1.2)
i
whare the 4,s are the areas in each of the four upstream zones swept out by u, as
mdicated in Fig. 1.
We can put this scheme in explicit conservation form

. . wdr a1 vAr - a1 .
p?_; 1:pi.j+ Ax (95_11,'22.;_9;.;11.22,_,}‘*‘?(P;_,,l;'-_y—P,j:'{,g (13)
A+ 1/2 __ udt n "

pi.j;ll_pi-f*'ﬁ(Pifl.j‘P.-_,) "
4)

n+12 " UAI n n

p.+1r2_,-=p,r,,r+m(p,~,,f.*p,-_,-).

O=e way of deriving the formulas for p7}}2 . p7+}7, is to notice that they are the

averages of P/ over the region swept out by the characteristics through the zone

adges centered, respectively, at (i + Lhand (i, j+ 1) (Fig. 2). We shall refer to this

scheme as the corner transport upwind (CTU) scheme, since it takes into account

the effect of information propagating across corners of zones in calculating the flux.

Tris scheme is first-order accurate. It also satisfies a maximum principle, since
=12 n+ 172

pTIi3, pt e, are weighted sums, with nonnegative weights, of values of the
solution at time "

-Uatx |1 __
1
EAa A1
D

FiG. 1. The region over which we average p! to obtain the new value for p is outlined with a dotted
iz It is obtained by following the integral curves of the vector field u (in this case. straight lines) back-
wards in time by A¢ from points in 4.
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-UAt

-UAt

Fig. 2. The shaded region is the region over which one averages p’ to obtain the CTU flux at the
zone edge bounding that region. It is the set of all points from which characteristics can reach that zone
edge between time (" and 17 + 41.

One fact that is immediately seen from the formula given above for the floxes
is the difference between the CTU scheme and the conventional donor cell
differencing. In the latter case, P =0, pj'_}'_"ﬁz = p7 ;. Thus, in this scheme, we
are adding a time-centered correction term to the donor-cell flux which estimates
the effect on the flux of the gradients in the transverse direction. This corresponds
to subtracting from the donor cell algorithm a term which, to leading order in the
truncation error, is always destabilizing. This is reflected in the differing CFL time
step limits for the two schemes:

uAdt vdr
CTU: —, —— =L 1.5
max(Ax A_r) (1.5)
Ar v di
Donor-cell: alnd + = <1, (1.6}
Adx Ay

where (1.5) is a sufficient condition, and (1.6) is a necessary condition, as is easily
checked using Fourier analysis.

One can view schemes of the form (1.3)}-(1.4) as being predictor-corrector
schemes. One regards the calculation of p7}/7 . p7 7.7} as the predictor step, with
the conservative differencing as the corrector step. Thus, if priva, were to be
calculated in such a way as to have a local truncation error of ©(4:?) in smooth
regions, then the scheme would be second-order accurate. To obtain such an

estimate for p7* 7 one must have

P 12,5
Atdp dx¢ép
n+!,’2A= " — —
P TPt T 3 D ax
. Arf dp 1;5,0) Ax dp
= L ——— u— e — —
Piim 2 \Max T e T 2 ax
Ax udr\ép vAtdp
(=R 17
Pis (2 Z)Ex 2 &y (7
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The only terms in (1.7) missing for the CTU flux (1.4) are the ones involving ép/cx.
Thus. we add that term to p”} 2 to obtain a second-order flux:

P4+ 1125

(o7, =07, 1) (18)

Ax AN 4%p,; v
Ax 24y

P7f113j=Pﬁ_,+( 5 —u-g

Here 4%p, ,;Ax should be a difference approximation to (£p:€X)| i ax a0y» and 47p
<hould also be limited to suppress oscillations at discontinuities. The simplest choice
< a central difference approximation to (Gp/¢x), with the i-dimensional limiter
oiven in {207

(4%p),, =min(kip?, | —p7 i ) 2007 el 2100, = pT )
§Sgn(P?+1.1_p?71.j} if (P?+1_,—P:,)(PZ,_PT ].j)>0:
=0 otherwise. (1.9}

Similarly, we define

P?.f»f”f;z:t’?,,*( 5 2 v Ay EU(PL*P:’_ Lk

8y _ a1 ) (4°p)i; 41
where 4%p is a monotonized central difference formula. such as the one given by
.1.9) with the roles of { and j reversed. Because of the nonlinear switch in the defini-
zon of 4%p, 4*p, one cannot perform a formal error analysis on this algorithm.
However, in smooth regions, one expects 4%p, 4*p to be given by the central dif-
izrence operators (47p); ;= Hoivr,—Pio1y) (47p) = Hp. o= piyo) In this
sise, one can perform the linear error analysis and find that the scheme is second-
order accurate. We have also calculated the amplification factor and evaluated it
sumerically ; we have found that, as long as the time step satisfies (1.5), the second-
order algorithm does not amplify any Fourier modes.

There is not a great deal one can say about the monotonicity properties of this
zigorithm, save that, when the slopes are fully limited, ie., 47°p = A p =0, it reduces
-o the first-order CTU scheme described above. In order to have this property, it
is necessary 1o treat the spatial derivatives in the predictor step in a non-symmetric
way: the derivatives in the direction tangent to the zone edge are approximated by
upwind differences, and are not subject to monotonicity constraints, while the
Jerivatives in the direction normal to the zone edge are approximated by
—onotonized central differences. For linear advection of a discontinuity oblique to
zhie grid, the algorithm appears to produce monotone results.

A different approach to the one taken here, more in line with the geometric
constructions in [20], would be to construct piecewise linear interpolants of p,
suitably monotonized, and to integrate over surfaces swept out by the characteritics
:0 obtain fluxes, similar to what was done to obtain the flux form (1.4) for the CTU
scheme. We have not done so here: for a development along such lines, see [21].
However, for strongly nonlinear problems, we find that a somewhat more elaborate
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treatment of the transverse derivatives than simply using first-order upwind
differencing will be required, leading to an algorithm which is intermediate in
complexity. This algorithm will be discussed in the next section.

2. SySTEMS OF CONSERVATION Laws

In this section, we will consider algorithms for solving numerically the initial
value problem

auU
V. F=
at+ F=0
U(x, )= U:R*x [0, T] - RY (2.1)

F=(F, F )eR¥xRY
U(x, 0) = Uylx).

For each ne R? we define the projected equations (along n} to be the 1-dimensional
system of conservation laws

U OF"
CULF o FU)=n-F(U). 2.

2
[
—

&r - Oy

We say that the system (2.1) is hyperbolic if, for every n the projected equations

Fic. 3. Characteristic surfaces in two space dimensions. I is a curve in the spatial plane with normal
vector field n. and S* is one of the M characteristic surfaces in space-time passing through I
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122 are hyperbolic, ie., that the linearized coefficient matrix V, F®*= A" has M real
cigenvalues ™' < --- < 2™ corresponding to M linearly independent left and right
erzenvectors {{™', r""), v=1,., M. We also have A" =n-A. where A=(A", 4'),
4=V, F*, A*=V_F". The left and right eigenvectors can be chosen so as to be
= >rthonormal. e, /™ -r™" =45 .. so that the expansion of a vector weRY In
:2-ms of the r™"s is given by w=3,_, _a 2™ r™, with 2% ={""-w.

Our algorithm for the calculation of conservative fluxes is motivated in part by
= version of the multidimensional theory of characteristics, which we review briefly
“a-e: for a more extensive discussion, see [8,16]. If 1" is a curve in the plane

X.1):t=1,). then there exist surfaces S* . S* called characteristic surfaces,
pzssing through £, such that the normal to S° at a point (x,!) is of the form
vo —2™%), where 2™ is the vth eigenvalue of the projected equations in the
dzection of the unit yector n {see Fig.3). The significance of these surfaces is that

z"ong each of these surfaces, a continuous, piecewise C! solution to (2.1) satisfies
<5z following interior partial differential relation:

o= (2 aw0)
ot

ét

:,n.v.(wju (n-A)n-VT) +{t-A)(t-VU))

:]“'“-(a(?—(t]+}.“"'n-VU+(t-A}(t-VU)), {2.3)

w3ere t is a unit vector orthogonal to n in the plane. Since (~""n, 1) and (t,0) are
tzogent to S*, then (2.3) contains only derivatives in directions tangent to S". In
particular, if we define d/de” to be differentiation in the direction of the vector fieid
v»2'n, 1), then (2.3) becomes

d
o AU L 1 4% -VU) = 0; (24)
do

i we obtain the ordinary differential relation from the theory of characteristics in
o=e dimension for the system projected in the n direction, with the derivatives in the
t Jirection acting as source ierms.

Finally, we assume that the Riemann problem for the projected system (2.2) is
wzil posed for all ne R?, ie., that the initial value problem for (2.2) given by

UG, )=U, for 3<0

=U, for x>0

hzs a unique solution with appropriate entropy conditions, for any choice of U,,
U, for which (2.2) is hyperbolic. This solution is a function only of the similarity
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variable y/¢; throughout this paper, when we require the solution to a Riemann
problem, it will be at the point y/t=0.

We assume, as in the scalar case, that we know U] ,, the average of the solution
over 4, ;. the zone centered at (i 4x, j 4y):

1
U .:——.[ U(x, ") dx.
4; ;

i
L

We want to extend the algorithm described in the previous section to calculate
U7t The difficulty here is that the different modes of wave propagation c¢an carry
gradient information from different sides of the zone edge where the flux 1s 1o be
evaluated. We solve this problem by using predictor calculations similar to (1.8) to
calculate two states at a zone edge, representing the propagation of signals coming
from the left and the right of the zone edge. We then obtain a single value for the
flux by solving a Riemann problem given the two states, with the jump assumed to
be parallel to the zone edge.

The algorithm can be broken up into the following four steps:

(1} the calculation of monotonized central difference approximations to

AU U 4*U_8U

-~

k3 2

Ax CX i jay) Ay C¥ liigx, jdy)

(2) the construction of time-centered left and right states at the zone
edges: UTr'3 .. e at ((i+ 1ydx, j4y), and Ut Urrhis e at
(idx, (j+13)4¥);

(3) the solution of the Riemann problem at the zone edges for the projected
equations along the normal to that zone edge, given the left and right states com-

puted in (2), to obtain U7} 3 . Ul

(4) the conservative differencing of the fluxes F7, S=FX UL

i+1 2.7
= F*(U"}2,) 1o obtain U7}

F

L
Lj+12

H AI X x A{ L) ¥
UJ;}-E = Uf.,i“';(F}—uz.j‘FHl_-'z,j)‘*'Z;(Fé.j—uz_Ff,jn,fz)-

We will describe the details of only the calculation of F}, ,, ;; the other fluxes
are calculated along the same lines, interchanging the roles of / and j, x and 1.

The calculation of slopes follows the pattern seen in the scalar case: we use cen-
tral difference to approximate the spatial derivatives of U and constrain them using
a 1-dimensional monotonicity algorithm. In imposing monotonicity constraints,
there are two strategies which have been used successfully in one dimension. The
first is to perform a nonlinear change of variables such that the new dependent
variables are the Riemann invariants, ie., a set of variables (v', .., v*)7 such that
I'.V,v" =8.., and interpolate those variables componentwise using monotonized
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wterpolation such as the one given for the scalar case in the previous section. This
procedure can be done omly for special systems, since such a set of Riemann
invanants does not, in general, exist when M > 2. A variation on this procedure is
done for Euler's equations for compressible flow, where the primitive variables are
interpolated; this is discussed in Sectiond4. The second approach, due to
Harten [14], is to expand the central difference approximation to the spatial
derivatives in terms of the right eigenvectors of the coefficient matrix of the
inearized equation and constrain the amplitudes in that expansion. Since the latter
procedure is well defined for general systems of conservation laws, we will describe
it here.
To calculate (4*U), ; we define the expaansions,

%(U|'+ 1.7 U,-_ !.j) = Z Otér‘”"‘,
2AVrar,= Ui =L 2™ (25)
2( Ug’_j" U‘-_ l.j) = Z airx.\'!

where /**, r=", 7% are the eigenvectors and eigenvalues of the equations projected
= the x coordinate direction. Then (4*U), , is given by

(A“U),—J:Z 2" {2.6)
2" =min(|a, |2}, |2%]) xsgn{xg) if 2j2%>0
=0 otherwise.
Next, we define the left and right states at the zone edges U753, ,, Uil ¢

We extrapolate from the zone centers on either side of the zone edge at
ti+1)Ax, jAyv), using a formula similar to (1.7):

.12 " Ax3U 416U

U£+lf'2.j.5: :+k.j"’—r76,x+_2';i_
. AxeU 6F‘+EF-‘)
i+k. j— 2 ax 2

A AtAN ¢U A1 &F*
()L 2

éx &y

kil v alr v (2.7)

r‘+k.j+

Here, and in what follows, we use expressions such as {2.7} involving the symbols
1S. +, k) to mean a pair of expressions: one with (S, +, k) replaced by (L, +,0),
the other with (S, +, k) replaced by (R, —, 1). In calculating U7}/7. ¢, we
approximate dU/dx by the monotonized central differences 4°U/4x and the 0F*/0y
term by a difference of Godunov fluxes, the extension to nonlinear systems in one
dimension of upwind differencing for linear scalar equations.
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It is convenient to view the calculation of Ut 5,0 U "rifi, g as comsistng of

two steps, the first involving the monotonized central difference approximations to
8U/éx, the second involving the transverse derivatives:

- . A4x  Ar  \oU

UVisro,s= U,-+k.,+ iT—?A '(-3; (2.8)
ey - AL oFY

U;+11?22,;'.s=Uf+1,rz,;.s—7€_y- (2.9)

In order to calculate U, , ;s for linear problems, it would suffice simply to
replace 0U/éx by (4°U), ,/dx. However, we make two changes in (2.8), which, for
constant coefficient problems, are redundant operations leading to identical values
for Ujf /3, but which have been seen to lead to a somewhat more robust
algorithm for strongly nonlinear problems. This first is to discard in the ¢U/6x term
the components corresponding to characteristics which do not propagate towards
the zone edge. The second is to introduce arbitrary reference states U, , Ug, taking
advantage of the fact that the characteristic projection operators appearing in both
the construction of the left and right states and in the solution of the Riemann

problem act on increments of U. The resulting algorithm is given as follows:

. ~ —~ 1 At B
U:‘+w2,;.s= U5+PS(U?+:<‘;_ US)+PS(i__—_Ax(Ui+k.j) (470 )iv s
2 24x (2.10)

Psw= ) AP Ee s
vi AN e ) >0
The reference states U, U, are chosen so as to reduce to as great an extent as
possible the size of the sum of the terms multiplied by the characteristic projection
operators Pg. One possibility is to take

- 1 . ary
UL=U +(§—max(/. M(U“,),O)m)d Ui,j

(2.11)

~ i f

0= U= (5 M0G0 0) 755 ) 47T
The additional cost of applying the characteristic projection operators is small.
Because of the monotonicity algorithm, we already know the expansion of 4*U in
terms of the right eigenvectors. Applying the characteristic projection operators to
{(47U) is accomplished by setting to zero the coeflicients of the eigenvector expan-
sion of (4*U) which have associated propagation speeds with the wrong sign.
Finally, the calculation of the terms involving 4* is easily accomplished using the
fact that the projection operators are sums of eigenprojections of A, implying that
PoA® AU =Y, juso A w’r". Using this fact, and with the above choice of U,,
U -, we obtain the following explicit expression for (2.10):
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- ~ At

_ R s A E NS Y

Ui+l/2,j.L_UL+_ZAY Z E RS RS g

T =0

e (2.12)

- -~ At
7 — R 78! e A X xv
LH']-'?J-R“ I Ax Z {,'l'r}.j /'i+l<j)1¢+l.;r:+l,;!

Tl <

19}
where the x"’s are the expansion coefficients of (4*U}, ; given by (2.6). This proce-
dure 18 esscnnally that given in [7] for computing the left and right states for the
t-dimensional algorithm, applied to the case of pilecewise linear interpolation.

To complete the calculation of U773 5 s we approximate (CF*/¢vMax, a0 DY
some appropriate upwind flux difference. The simplest choice 15 to use Godunov’s
first-order method to evaluate 8F°/¢y. If we define U/, | ; to be the solution to the
Riemann problem for the projected equations along the p-direction, with left and
right states

(UT s UL a1 = (UL UL ) (2.13)

iLj+

then

. At
U:'Ill/fzzjs Ui+1,f2,j,s_2dl( (L,J,k“l;) F(L;+k;—1,2)) (2.14)

is a sufficiently accurate approximation to (2.9) to yield an algorithm that is
second-order accurate. For problems involving moderately strong nonlinear discon-
tinuities which are oblique to the mesh directions, it is necessary to use a slightly
more complicated algorithm to evaluate the effect of the transverse derivative term
(EF* ¢y)(41/2) on the left and right states. This term estimates the change in the
solution due to the y-gradients. In the case of an oblique discontinuity, if the
estimate is sufficiently different from the actual change calculated in the conserva-
tion step, the solution will overshoot, or the discontinuity will spread, depending on
the relative signs of the gradient and the error. To alleviate this problem, we use an
estimate for éF*/8y which is closer to what we will actually use in the conservation
siep. by taking UJ,,,, to be the solution to the Riemann problem for the
equations projected along the yp-direction with left and right states

(Ua J+ 12,00 U:'l,-j+l 2. R)= [01.1'-* 142,L+ 0f_j+ 172.8)s (2.15)

where (3’,',,+14,2,L, U, ;412 r 1s computed using the analogue of (2.10) for the zone
edge at (i Ax, (j+ 3) 4p).

Given the left and right states defined as above, we solve the Riemann problem
for the I-dimensional equation projected along the x direction to obtain U7}/7 .
In the case of constant coefficient equations, it is easy to check that U772 satisfies
the following linear equations, independent of the choice of T, Upg:

Ir.v.(U?:llff-J* U"Hﬂ-f-") 2 A} 507 -(U;'r+k,j+l,"2)‘F".(U-ird»k,j—lﬂ)):o’
(2.16)
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where
. | R } oo e
Uiiia,n="U 7_j+(5—/.‘-‘ 27;) (4°U),,» if 15> 0
1 41 .
= UT+1_,-—(§+/-X"' m) (AU o1 otherwise.

This is a finite difference approximation to the characteristic form of Egs. (2.4) on
the M characteristic surfaces intersecting the line {(x, y):x=(i+ ;) 4x} at time
"*12 The proof is a routine calculation using the characteristic projection
operators; the key fact that is required is that the solution to the Riemann problem
for (2.2) with left and right states W,, W, is given by

W=P W, +P,Wpg.

where P,, P are the projection operators defined in {2.10). In the case where the
equations are nonlinear, but the solutions are smooth, U7}\7, satisfies (2.16)
modulo terms which are second order in the mesh spacing, provided that
Os—ur, x.; i1 of the order of the mesh spacing, where the eigenvectors and eigen-
values are evaluated at U7} 'Z . This fact describes one sense in which the
algorithm described here is upstream-centered for smooth solutions: the value of
the predictor U7, is given as a solution to M linear equations which are finte
difference approximations to the characteristic equations.

Finally, we need to specify a bound on the time step for stability. We expect that

the CFL condition should be given by

max
ijv

by analogy with the stability condition (1.5} for the advection equation. In the case
where A% and 4 ¥ commute, the above stability condition holds in the sense that it
held for the scalar equation, ie., that the fully limited scheme, and the scheme
without limiting, both have {2.17) as necessary and sufficient conditions for Fourier
stability. This follows easily from the analogous result for scalar equations, plus the
fact that the system can be diagonalized. We have not proven (2.17} for any
problem for which 4* and 4* do not commute. However, we have used the above
condition as a time step control for our gas dynamics calculations and have seen
no evidence of instability.

At

X, v

ML
A,—‘j A

ML Af
2 | A A_l

)sl, (2.17)

3. QUADRILATERAL (GRIDS

The above algorithm can be extended to the case of arbitrary quadrilateral gnds.
For the purposes of deriving the algorithm we will assume that our grid comes from
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a smooth coordinate mapping, although the final difference algorithm will be
expressed only in terms of differences between coordinates of the corners of the
cuadnlateral mesh.

We now assume that our computational domain is divided into quadrilaterals
1. with corners located at (x;,;;,.,2. ¥;+1.2,-12) Furthermore, we assume
there is a smooth map (£, n)«» (x, ¥) between some coordinate space and physical
space. with a rectangular mesh in (£, n) space with corners located at (&, .,
7 _12) such that (xi+1,-'2,j+ s Yirrajr120= (v a2 PEcv 105 Bya 0 2))-
We can transform the system (2.1) to the (¢, #) coordinate system :

a(JU) 6F5+6F”“
ot aocf én

” J=Det(V,,,(x, ¥))
Fi=n".F, Ft=n*-F

n_ [ _ﬁ) n:z(_ i 5—)
" (ﬁn’ )’ 2eE)

Without loss of generality we assume here that J> 0. We define finite difference
epproximations to the derivatives of the grid mapping function:

0 (3.1)

|2
-

53]
i

é €x .
(A°%); v 12=Xiv 125412~ Xic 12 012 T 55 A¢;

> 12012

" X

(4"x); ., va ;= Xivy2 412 — X212 ¥ 0T An;

o Lioizay

1
(Aéx)i,j= 5((Acx)i,j+ 12+ (Aix)i,jk 172) {3.2)

{4"x); ;= %((A"x)u vt (A™) 2.5)
1 , .
G, ;= s((xy 172, j—12— Xic12 5+ 1/2)(}'i+ itz = Yicuzj-12)

+(Xivipie1n— X 12N Vs va ez — Yierz j— 1))

Using these finite differences, we can make the connection between the mapping
denivatives appearing in the transformed equations {3.1) and the geometry of the
finite difference grid in physical space (Fig. 4): 0., = J({,, n;) 4, 47, is the area of
the (4, j)th zone, and n® 4§, x —(A°X){;, p, 0" dy; 2 (4"X)}, |, ; are normal to the
zone edges, where we use the notation (w, w,)* = (w,, —w,).

As in the previous section, we will assume that, at time step n, we know U i > the
average of U over 4, ;. The procedure for calculating U} ' follows the same basic
cutline as that for the rectangular grid case. We construct time-centered left and
nght states at the zone edges, soive the Riemann problem, and difference the fluxes
conservatively, taking care that, at each step, the effect of the quadrilateral mesh is
accounted for in a suitable fashion.
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FiG. 4. Geometric interpretation of the difference approximations 1o the derivatives of the gnd
mapping.

Our conservative difference step will be of the “finite volume™ type:

1 At : +12 "4 152
Ul i=U7,+— ((4"x),_p ;- F(UT s )_(Aﬂx)xtl,’lj'F(U U3

. P12y P12,
(A U2 4 (850, 4 FUTTIR)) (33)

It is clear that this formula is a conservative finite difference approximation to (3.1).
This formula can aiso be obtained by integrating (2.1) over 4, ;x [¢", 1" '], apply-
ing the divergence theorem, and approximating the resulting surface integrals using
the midpeint formula. From that point of view, each of the terms multiplied by
4t/o, ; represents a time- and space-averaged flux through one of the edges of 4, .

Our strategy for obtaining values for U775, Ut} )}, follows the pattern used
in the rectangular grid case. We extrapolate time-centered left and right limiting
states at the zone edges using (3.1). We then solve the Riemann problem using these
states for Egs. (2.1) projected in the direction of the normal to the zone edges in
physical space. We consider, for example, the zone edge centered at (i + 1/2, j) and
we wish to construct U7}/ ,, UTl'2 ., the left and right states at that zone
edge. The starting point for this is to consider the extrapolation formulae analogous
to {2.7) for the system (3.1):

48,4, 8U  A1GU

U?Ill,*'éz,j,s= S - 2 8 2 &
_un +Ac,.,,ka_U ﬂ(aFerrEF"
fHhi= g g 2T\ @ cn
1 At el At én" At OFT
'*“-f+(—2 24T, )6:? T T
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where 4 =n".A. The term (4¢/2/}(én"/c) - F comes from putting 6F%/0¢ in non-
conservation form and is equal to zero in the rectangular grid case. We break this
procedure into two steps:

A 1 At ANEU
Ui js=U0 o+ (ii“Tzk A‘)Edgi+k (3.5)
g Ly C
s - dr /én” cF"n
Ui+l],;22,j,5= U.‘+12.;_S_T,(F'F+ n ) (3.6)

We approximate ¢U/6¢ by monotonized central differences and ¢F7/dn by upwind
differences. The term (dn"/6¢) - F is differenced in such a way as to exactly cancel
the difference approximation to ¢F7/Cy if there are no gradients in the n direction.

We first considae the calculation of U, _| - .5 We approximate
1 4t . 1 A1
oA x|+ A% AU 37
(—2 2T AE, . ) (—2 :a,,‘._j( Woow, Al '*“)) (37)

where we have replaced J and n°, n” by the appropriate difference approximations
from (3.2). By analogy with the rectangular grid case, we want to approximate
(¢ U/BE) AE; with (4°U), ;, a central difference approximation to which some form
of monotonicity constraint has been applied. If the coordinate mapping is smooth,
then the formula (2.5) for equally spaced zones can be used without modification,
while retaining second-order accuracy in regions where the solution is smooth.
However, we replace the eigenvectors in the monotonicity constraints in (2.6) by
ek 7). v=1, .., M, the left and right eigenvectors corresponding to the eigenvalues
/"}Is . </"5 M of (A”)i)l A(U7 ). As before. we can also discard terms in (3.7)
u.orrespondmg to signals propagatmg awayv from the zone edge and allow for an
arbitrary choice of reference state [/, obtaining the following analogue of (2.10) for
a general quadrilateral grid:

(]i+1,'2‘j.3= ﬁS-i-PS(U:j—-ﬁS)

1 At -
+Ps(i-— (4™ e - A(U,m))-(A‘U),-H,,-, (3.8)
2 20r+k}
where
PSW— Z (]l_-v-‘(j H)rl—v—kj

vit i =0

|—k1

We approximate (4t/2J)(6F"/on) bv an appropriate upwind difference
approximation. In general, it is of the form of the corresponding difference
approximation i the conservative difference step (3.3):

AtaF" At

2J én

((4 x)a;+1/2 F(UT;nz)_(df")Uq;z F(U:r,—uz))- (3.9)

Iy
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Here U], ,, is calculated by solving a Riemann problem for the projected equa-

tions along —(4°x);;, ,, with left and right states (U], 2.5 Ul 412} As in the

rectangular grid case, U, ,, ¢ may be set to U7, or U,;, .. Finally, we
approximate (4:/2F)én"/én)-F using the finite difference approximations (3.2):

Atén”F At
27 8 T 2a. .

.7

(4™t w2, — (A"X)Y ) -F(UL). (3.10)

Collecting our difference approximations, our final value for U773, ¢ is given by

- At
1/2 — A T
Ulrss=Uivinst Y. [(Agx)r'-#k.jd» v FU  f s 02)

L7

- (Afx)r'J;k,jfl,Q ; F(U’r“;k,jf 1/2)
— (4™ e, = (A"™X) a i ) FUTL )] (3.11)

We obtain U} [7, by solving the Riemann problem for the projected equations

along (4"x);, ,,, ; with left and right states U7\ ,, U7NE o ULl L] satisfies
finite difference approximations to the characteristic equations (2.4) for the charac-
teristic surfaces through the {i+ 1/2, j)th zone edge in physical space, similar to
(2.14).

The appropriate generalization of (2.17) as a CFL condition on the time step is

given by
max (
i v

This is dimensionally correct since ).f;;, A7} contain factors of 4™x, A%x. In the case
of advection, and if the coordinate transformation is a linear map, one can
demonstrate by numerical evaluation of the Fourier transform, as was done for the
rectangular mesh case, that this is the correct CFL condition. In general, the time
step bound (3.12) has the following interpretation in terms of characteristics: At
must be less than the time it takes a wave propagating in a direction normal to a

zone edge to reach an opposite zone edge.

A )s_ 1. (3.12)

i

Aé.vﬂ

LJ
i

R

LN R

4. Gas DynaMiIcs

We give in this section a detailed description of an algorithm of the type
described above for the case of Euler’s equations for inviscid compressible flow in
two space variables, in planar geometry, on a general quadrilateral grid. The system
we wish to solve is of the form (2.1), with M =4, and
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I pu pv
1y "
c= "] o= TP Fu=| BV L @
pr put: pro+p
pE pul + up prE+ p

where p is the density, (4, v)=u the x and y components of velocity, and E the total
energy per unit mass. The pressure is derived from these quantities via an equation
of state, p= p{p,e), where e is the internal energy per unit mass, given by
¢ = E— }(u? + ¢). In this section, we will describe an algorithm suitable for use with
= polytropic equation of state, ie, for p given by plp,e)=pel(y — 1), and the
zdiabatic speed of sound ¢ given by ¢’ =7p/p. The case of a general convex equa-
zon of state is a str;ightforward extension of ideas in [6].

The projected equations for the system (4.1), are essentially those of gas
dvnamics in one dimension. If we project the equations in the n direction for n a
unit vector, we can make a change of variables to obtain the following system
aquivalent to (2.2):

FW EG(W
557+CG§( L) (42)
X

p pu

N2
w=| P Gw) = plu l JTrp

pu puu
pE puNE +u™p

Here ™ =u-n, up=u-n* with the other variables defined as before. Since n is a
unit vector, #? + v = (u™)?+ («7)” so the formula for the internal energy e can use
either quantity. From these equations, it is clear that the eigenvectors and eigen-
values of the linearized system, as well as the solution to the Riemann problem, are
given by those for the t-dimensional gas dynamucs equations, with u! being treated
as a passively advected quantity. Hence, we can use the techniques of [4, 7] for
calculating solutions to the Riemann probiem and for manipulating characteristic
variables.

Although the algorithm described here follows the same basic outline as those
given in the previous two sections, there are some differences, mainly with the
calculation of U, 1, 5- For the purpose of calculating Ui.;2.;5» we make a non-
linear change of variables, performing the difference calculation of {3.5) in terms of
the primitive variables p, u, v, p, as was done in [7] for gas dynamics in one space
variable. We then transform back to the conserved variables to calcutate UT} /7 ¢
This procedure enables us to perform our central difference calculation com-
ponentwise on the primitive variables, using formulas similar to (1.9), rather than
on the amplitudes of an expansion of 4*U in terms of the right eigenvectors. Also,
since we are working in terms of the primitive variables, we can use the more
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elaborate central difference algorithm given in [6], which gives rise to a steeper
representation of dicontinuities than (1.9).

In order to justify the use of the more elaborate algorithm for computing cUe
and, more generally, to understand the errors introduced by using difference
approximations to 8U/8Z, such as (2.5), it is useful to make a local change of
variables (£, n) < (a, b)

{5 ())
e[ (&) ()

The coordinate (a, b) measure arc length along the grid lines {n=const},
{&=const}, respectively. It is easy to check that, for (£, n} sufficiently close to
(¢, n,) the Jacobian of the above map is nonsingular, since the cross derivatives
dafon, 8bjoE = O((& —¢,), (n —n;)). Using the chain rule, we compute ¢U/e¢ 1o be

(4.3)

au 8l éa el ab

AE.

Thus, the central difference approximation to ¢U/d¢ used in {3.8) can be viewed as
using a central difference approximation for ¢U/éa and dropping the term propor-
tional to 8b/¢¢, since it is of one order smaller in the mesh spacing. In terms of the
mesh in physical space, this corresponds to the assumption that the arc length
along each of the coordinate directions is a smoothly varying function of the other
coordinate. This is a condition satisfied in a wide variety of applications, even when
the grid mapping as a whole is not smooth, such as in the case of highly stretched
grids used in aerodynamics calculations. In the latter situation, one can retain the
formalism developed here but use an approximation to the derivatives appropriate
for a strongly varying mesh in the a- or b- direction.
In terms of the coordinate system (4.3), we can express U2 _ in the form

i+1/2, /.8
“ 1 At db,, ., au
U, =" 4| Ry AU, ) | — da. 44
+ /2, L8 £ (—2 2Ji+k‘j i+k, j ( r+k.j) da i ( )
r+ 172 3 4t a T
U;+1/2,j,sz Uiy 1;2,;,5_2— £Aa1'+k.j+l;‘2ui+k.j+ lsz(Ui+k,j+ 1z)
i+k

—da; ;1M k12 F(U;‘Tu.j— 12)
+ F(U?+k,j) ) (Ab£+ 1/2+kn?+ 172+ k5 Ab,-_ 1/2+kn?_ 1/2+k_j)]’ (4-5)

where
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{Aa];‘,j[+1,f2] = ((Aéx);—".j[+1,"2] + (Aéy)xz.;[»l 2])“2

(4b)ir s 121, = ((A"-V)f[tl 27, T Mq}”%{ﬂ :].;)l .

b ( x):]+l’;[ (46)
W12y = -
[+123.7 Abi[+12].j
a (A:x]figﬂ.z]
0 jrv21™ 4 .
q, jr+11]

We calculate 0,-4,14,2_}-‘5 by transforming to the variables V'=(p, u, v, p)' before
applying (4.5):

’ Ve = VU7
. 1 Atdb, ..
Vici2,s=Vs+Ps(Vi; *Vs)"'P( 2—WT:+lk} :+k,jTH-kJ)
ov
XAk, (4.7)

0;+ 12,57 U pi+ 1,-2.;;5)-

HereT —V UlU" and PSIS defined by PS'H—Z‘ + 20" >0‘1;+k_|u)r|+kj’ where
FE N o /"‘ v=1, .., 4 are the eigenvectors and f:1genvalues of T }-A47,-T.;

R R SRR
jol=u.nt—¢, A%¥=i%zu-nt,  i=u-nlie
1 1
e ! : e
—_n® p
ra.l= f , rtz,2___ g , ra3_ b’;l s ra,4: b
e : e
T p 0 0 p
e &2
re(a-2, 2 1)
o2’ 272
1
(1,0,0,—?)
=0, —n?, n® 0)




MULTIDIMENSIONAL UPWIND METHODS 191

Here n®=(n%, n’) and the subscripts i, j are suppressed. The time step control
{3.12) in terms of the above eigenvalues, is given by

dali, jAt
max( /'."."."——{LDQI.
Ljow

DY
The approximation to (8V/éa)|; ; da; ; we use is obtained by using a formula like
(1.9) for each component of ¥. For exampie, we define, for ¢ = p, p. 4, ¢,

“a.v

/£

_Ab,‘jdt1
L8y e,

G,

(Afmq)i,;=2min(lg7,  ;— g7l igl;— gl 1)
it (g7, 1.j —qzj)(qzj_ qi_ 1,;) >0,
=0 otherwise,
(A;q)i,j'_' mln(% |QT+ 1.7 ‘i'?+ l,jl’ (Afimq)!}j) x Sgl’l(q;’+ Ly q’:+ l-j))
and set (4°g), ;={(474), ; to obtain the algorithm analogous to (1.9). In the calcula-

tions presented in Section 5, we use the following algorithm, taken from [5], which
vields a steeper representation of discontinuities:

(%), = min (4 ez =Dt OO LT N2 (47,
(Aa,-_l‘j+4Aai'j+ Aa; 1.}')

lim
xsgn(g?, , ;—4qi_ ;‘j)-

Given the values for 4°V, we can give explicit formulas for ¥,, 5. ist

o~ 1 At Ab, .
— n n b n i, a
Ve=V7,+ (E—max(utj-nf‘j-% ¢, 0) 20, 1) 47V,
- ., 1 o At Ab,
Vg= V:’+l,j‘i(§+mln(ui+l,j'n?+l,j_ci+l‘j!0) p _‘HJ) AV
i1,
Viera,s= 175+Z Bivo isTiie,
v AIAbt Ta sa.v a,v 1 e
»Br'+1=2.j~L:T‘j ARF— AT S -4V if 477 >0,
iJ
=0 otherwise;
v Ar‘dbl lic:a F4a.v v H Ja.v
ﬁf+lfl.j,R=“ﬁ(/'i‘-q—ll‘j_/"i:i-l_j)(l?:l-l‘j.AaVi+l.j) if "':'J:t.j‘“’-o’
i+ s F

=0 otherwise.
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The formulas for ¥, ;s ate identical to those given above, with the interchange
of i and j, n* and n°.

The calculation of U772 . given U,, .5 is given by (45), with ULHQ’ the
solution to the Riemann problem for the equations projected in the nf,, direc-
tion, with left and right states given by U7, 0 s=U., 12507 Ul ins= Ul
In the calculations shown below, we use the latter choice.

The final conservative difference step is given by (3.3). We define

m?:fﬁi;
?:11,«'22,j“?:11,f22.j +p7) 11,7:22.j A%, Ly
7:11';.2.1 ‘?:il‘f;l'z.j_ P?rlisg.; A"x, ) a2
:‘I:ll!fzz.j(ET:ll/flz.j + Pfrllgj—’PT: 1l'§j)

m
4 —
Fi+l,‘2,f_

», m

n+1,2
L4 1,2
A+ 1:2 a+1/2 _ a+ k2 I,
Fu B VIS TL WY pi.j+l;2A Yis+12
L4127 na+ 12 Un+1/1 A2 4l
fi+vi2Viie12Pijvy2 478 -2
n+1,2 n+1/2 412 ;on=12
i.j+1!2(Ei.j+1,f2+pi‘j+]2’pz.j+]:2)

m

m

B r+ 172 _ n+ 172 & A+ 1/2 A+ l2 n+ 172
where m7I 7. = Ab; 1p i piiE Wi W0 s Ml T da; ;. l;‘ipi.j+1f’2
|nj{j+12-uf_jj-’f_,,2) are the mass fluxes through the zone edges at {i+3,j) and

ti, f+1). Then (3.3) is given by

At . .
r+l __ n =" Z _ & _ 7
Uu‘ "Ui,j+a (Fi—l,-’z.j Fr’+1,~‘2.j+F?,j712 Fr'.j+l,‘2)'

oLj

Dissipation Mechanisms

In [7], it was noticed that, in one space dimension, and near strongly nonlinear
shocks, the dissipation implicit in monotonicity constraints such as (3.6) and (4.8),
was insufficient to guarantee the correct jump in the Riemann invariants trans-
ported along the characteristic families which cross the shock. For that reason, it
was suggested that additional dissipation be added to the algorithm near such
dJiscontinuities in the form of flattening of the interpolation functions and by adding
a small viscous dissipation term to the fluxes. Since both these forms of dissipation
were required for 1-dimensional problems, it is expected that similar dissipation
would be required for the present algorithm, since, for 1-dimensional problems, it
is similar to the algorithm in [7]. The second-order artificial viscosity used in [7]
can be applied without modification to the present algorithms simply by adding the
dissipative flux to each of the four fluxes, prior to the conservative differencing step.
The form these dissipative fluxes take in the case of a general quadrilateral grid 1s
also standard; see, e.g., [19]. The simplest flattening algorithm in [7] can be used,
with one important modification: in each zone, the slopes corresponding to the



MULTIDIMENSIONAL UPWIND METHODS 193

derivatives in each of the grid directions should be fiattened by the same amount.
We define flattening 7%, »°,

~ [ Pivr ;= Pio ]l . |P1‘+|;"Pa71,,i c
7=t (=) )0 S >
Ais lpf+2.j_Pp2_,-‘| (s +1) M min{p, ., ; Pie 1)

=4 otherwise (4.9)

a _ : ~a ~a
Xi;= mlﬂ(x,-_su,,s )fi_j}a

where
{z)=0 if z>:z,
=1 if z<zq,
—1_2"% if zg<zo<zy,
21— Zg
and

8= sign{p, , Li— Pim1 )

We define y? ; similarly, with the roles of i and j reversed. Then the slopes 4%, 4°g
obtained from (4.8) are reset to

Aaqa}j!AbQLj_'Xi.j‘daqijﬁ xi,jdbqi,jv (4.10)

where

x‘,,j = mm(x:",, x?;)'

In the runs discussed in the next section, the parameters in the above algorithm
were set to be § =033, z,=0.75, z, =0.85. In addition, we used the 2-dimensional
Lapidus viscous flux discussed in [7] with a coefficient of 0.1. These were the choice
of the parameters used in the corresponding algorithms for operator split calcula-
tions described in [7] and have been found to give adequate results when used with
the present algorithm over a wide range of problems.

Boundary Conditions

It is straightforward to impose various continuation-type boundary conditions
(inflow, outflow, periodic, etc.) in regions where the grid has a natural extension
beyond the computational domain. Since the numerical domain of dependence of a
grid peint is contained in the 9 x 9 block of grid points containing the point at the
center, then one can extend the original computational mesh by four grid points in
each direction and set the values of the extended part of the grid at the beginning
of each time step using the boundary conditions, thus supplying sufficient data to
calculate the values on the original grid.
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The most common situation where one cannot extend the grid is in the case of
an impermeable surface, particularly on a body-fitted grid. Let us assume, for exam-
ple. that the curve {&(x)=¢&, .} is a reflecting surface, with the fluid contained
in the region {&(x)>¢&,_,.}. The algorithm described above can be applied
without modification, if we specify values for the slopes 4%¢. _, 4 ,. 4°g, 1,2 ; and
for the fluxes F(U] _ |, ), F(U77}3 ). The slopes are given by

49;,;=4.45,=0  g=p.pmg o0
- b b b
ni -2y 'Aj U - mm Iulu 7 iq -1 2 ; Zl{um-(-l 7 m }) Il -1z ]Sgn(um i m—l;lj)
b A
if (uluj ‘3—1Z,j)(uio-v-l.jruio.,l)'"14-,—1:,;>0
=0 otherwise. {4.11}
’
Given the slope information, it 151 possible to calculate T, 1, . UL" VA 5 To
abuain the states U} _,, ,, UL7Y5 ;. we solve Riemann problems projected in the
n; _, ., direction, with left and right state given by
n+12 + 172 )
Giot 2090 13.,0= ql{)ulljRﬁqioleJR! g=p.p. 1N '712; (4.12)
= 2 & n+12 — b ~ b ’
[ PSS PR YAY. MNP VA St | FRESP AN PR IY Tl LS. 5

With this choice of left and right states, it is clear that u,_,, =0, so that the
advective terms in the fluxes at (ig— 1, j) vanish, leaving only the pressure terms in
the x- and y-momentum equations. Whatever approximate solution to the Riemann
problem is used should guarantee that the advective terms vanish in the flux
calculation at the wall.

5. NUMERICAL RESULTS

The gas dynamics algorithm described here has been used in a variety of applica-
tions in two dimensions, including flow in cascades and channels with body-fitted
meshes [9], in adaptive mesh refinement calculations [2], and in a conservative
front-tracking algorithm [3]. In addition, various forms of the algorithm for scalar
equations have been used to calculate flow in porous media [15].

We will present here two gas dynamics calcuiations, both done on rectangular
grids. The first is the calculation of a steady state regular shock reflection described
in [23], which has been used extensively as a test problem for numerical methods
used in aerodynamic calculations [25]. The second test problem is the double
Mach reflection of a shock off an oblique surface, used in [22] as a test problem
for comparing the performance of various difference methods on problems
involving strong shocks. Since our purpose is to demonstrate that the current
method has the same resolution as the corresponding operator split algorithm, we
present also a calculation of the latter problem performed by using in an operator
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290

FIG. 5. Steady state regular reflection problem.

split formulation the 1-dimensional algorithm obtained by restricting the algorihtm
described in Section 4 to one dimension.

In the first test problem, the computational domain is a rectangle of iength 4 and
height 1 (Fig. 5). This domain is divided into a 60 x 20 rectangular grid, with
dx = y5, Ay = 35. The boundary conditions are that of a reflecting surface along the
bottom boundary, supersonic outflow along the right boundary, and Dirichiet
conditions on the other two sides, given by

(p1 u, v, P” 0.1 = (1) 2-99 0‘9 1/1'4)
(ps 1,0, PY s, = (1.69997, 2.61934, 50632, 1.52819).

Initially, we set the solution in the entire domain to be that at the left boundary;

we then iterate for 500 time steps using a CFL condition of 0.9, at which time the
solution reaches a steady state.

In Fig. 6, we show a contour plot of the pressure. The contours are equally

FiG. 6. Numerical solution to regular reflection problem: (a) with fattening; (b) without flattening.
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Fic. 7. Comparison of#pbressure profites for regular reflection problem along the line p=0.525
-=11): x—with flattening, *—without flattening.

spaced, with contour levels of 0.1, beginning at 0. The shocks have a nearly
monotone transition, and are fairly narrow, with some slight spreading on the high
pressure side of each shock. This spreading is due to the flattening algorithm (4.10).
We see this in Fig. 7, where we plot profiles of the solution at y =0.525, computed
with and without flattening. The width of the shocks is about 2-2; zones in the
normal direction, where this figure is obtained by counting the number of points in
the transition in Fig. 7, and multiplying it by sin(tan ~'({4x/4y}|tan(z)|}), where
z is the angle between the direction tangent to the shock and the x direction. The
shock transition with flattening is slightly broader; however, the transition without
fattening has some low-amplitude oscillations, which are not present in the
solution obtained with flattening. Even though the shocks are supersonic on both

Vd P

s s
Ve
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b

Fig. 8. Ramp reflection problem: (a) initial configuration; (b) double Mach reflection at later times:
solid lines are shocks; dotted lines are slip surfaces.
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FiG. 9. Numerical solution of ramp problem using the method described in Section 4. The mesh is
a rectangular mesh of 400 x 100 zones, with the reflecting wall beginning 20 mesh lengths from the lower
left corner. Ax =4y = &, and the time shown is +=0.2; thus this calculation corresponds Lo the finest
grid results in [227].

sides, there is no difficulty with uncontrolled diffusion of the discontinuities. This is
in contrast to the results obtained with first-order upwind methods, where steady
shocks remain quite sharp if the transition is supersonic/subsonic, but which spread
over many zones if the transition is supersonic/supersonic. Indeed, the main
difficulty for the present method is to ensure that the shocks are broad enocugh so
that sufficient dissipation occurs across the shock, as was the case with the operator
split second-order methods,

The second test problem is unsteady shock reflection problem, A planar shock is
incident on an oblique surface, with the surface at a 30° angle to the direction of
propagation of the shock (Fig. 8). The fluid in front of the shock has zero velocity,
and the shock Mach number is equal to 10. The solution to this problem is self-
similar, with U a function of (x, y, ) only in the combination (x/t, y/f). In Fig. 9,
we show the results of calculation of this test problem performed with the present
unsplit second-order method; in Fig. 10, the corresponding results obtained with
the operator split method. The results of the two calculations are essentially identi-
cal, supporting the assertion that the unsplit method has the same resolution as the
corresponding operator split method. However, a considerable degree of care was
required in the unsplit scheme for this to be the case. The choice of (2.15), rather

FiG. 10. Numerical solution of ramp reflection problem, using operator split method, with numerical
parameters the same as for Fig. 9.
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than (2.13), in calculating the transverse derivative in the predictor step is essential;
otherwise, one obtains considerably lower resolution in the jet along the wall in the
double Mach region. The accuracy in the double Mach region is aiso sensitive to
the reflecting boundary conditions. The former difficulty has no analogue in the
operator split method; as for the latter problem, the operator split method gives the
same rtesults which much simpler boundary conditions. Finally, the multidimen-
sional flattening algorithm given by (4.10) was required to eliminate low-amplitude
noise behind the shocks, whereas the operator split algorithms required only the
I-dimensional flattening algorithm in [7] to be applied in each sweep.

6. Discussion AND CONCLUSIONS
”

In this paper, we have derived explicit second-order Godunov-type methods in
two space variables by using the wave propagation properties for multidimensional
hyperbolic equations and by limiting some of the second-order terms to suppress
oscillations. The calculations in Section S indicate that we have been successful in
the goal stated in the Introduction of producing an algonthm with comparable
performance to the operator split second-order Godunov methods, at a comparable
cost. In retrospect, this is not surprising, since the multidimensional algorithm
consists of combinations of the 1-dimensional operators which appear in the
operator split schemes. In particular, the same Riemann problems appear in the
present method as in the operator split methods, since in the former case averaging
the solution to the characteristic form of the equations over a zone edge provides,
viz (2.4), a natural choice of a direction in which to project the multidimensional
equations for solving the Riemann problem. However, there are differences between
the present algorithms and the operator split approach. The algorithms discussed
here are somewhat more expensive, requiring twice as many solutions to the
Ricmann problem as the corresponding operator split algorithm. Since the cost of
solving the Riemann problem for a polytropic equations of state constitutes half the
cost of the calculation in one dimension [6], this leads to an algorithm which takes
50%. more time than the operator split algorithm. In the regular reflection problem,
the vectorized implementation on the Cray | advanced about 24,000 zones by one
tirze step in each cpu second, consistent with this estimate and the timing figures
for the corresponding 1-dimensional algorithm given in [6]. Also, the mult-
dimensional algorithms appear to be more sensitive to various details of the
implementation, requiring a greater degree of care, such as for the reflecting
boundary conditions (4.11)-(4.12), and for the flattening algorithm (4.10).

There are a number of straightforward applications and extensions of the
methods described here. [t is possible to introduce quadratic interpolants, as in [7],
to evaluate U in the predictor step in order to improve the resolution of linear
discontinuities by means of contact detection and steepening. Conservation laws for
which the fluxes have an explicit spatial dependence, such as for incompressibie
multiphase flow in porous media, can be easily treated using similar techniques to
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the ones used for the general quadrilateral meshes. The treatment of a general equa-
tion of state via the techniques in [6] is accomplished by introducing an additional
transport equation for y = p/pe + 1 for use in the predictor step for the transverse
derivatives. Thus introduces some additional complication into the method, which
is more than offset by the fact one need only evaluate the equation of state once per
Zone per time step.

There are some problems for which the formalism given here is attractive, but for
which the extensions are not entirely straightforward. One of these is the extension
of this method for calculation of problems in Lagrangian coordinates in two dimen-
sions. The difficulty here is that the motion of the grid must be obtained from the
solution itself; unlike in one dimension, neither the solution nor the fluxes are
defined at the corners of the mesh, where it is most natural to specify the motion
of the grid. Consequently, some form of averaging of the velocities must be intro-
duced in order to move the grid, but one which does not degrade the resolution of
the method [17]. Finally, there is the question of the extension of these ideas to
three dimensions. If we just take as our advection algorithm the 3-dimensicnal
analogue of (1.2), we arrive at an algorithm for systems which satisfies the proper-
ties (1)-{3) in the Introduction, but requires 12 solutions to the Riemann problem
per zone per time step; this is in contrast to the 3 solutions required by an operator
split method. The large number of solutions to the Riemann problem comes from
the fact that for each coordinate direction in three dimensions, the analogue of the
predictor step for the transverse derivatives (2.9) requires a calculation comparable
to the full 2-dimensional calculation described in this paper. However, if we are
willing to relax the third requirement somewhat, we obtain an algorithm which
requires only 6 solutions to the Riemann problem by using the extension of donor-
cell differencing to systems to evaluate the transverse derivatives in the predictor
step; equivalently, we would be ignoring the contributions due to transport from
zones offset by one mesh length in all three directions, which correspond to third-
order terms in the truncation error. In both cases, we would obtain algorithms
which, for 2-dimensional problems aligned with one of the mesh directions, give
identical results to the algorithms described in this paper. The question as to what
the appropriate formulation is for problems in three dimensions is undoubtedly
problem dependent, and probably can be resolved only by numerical experiments.
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